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The solution of a Fredholm integral equation of the first kind which 
is, in general, an ill-posed problem, can be regularized by the maximum 
entropy method (MEM). With this method the solution is reformulated 
as a nonlinear optimization problem with one or two nonlinear con- 
straints. In real life applications, however, this optimization problem is 
a large-scale one with up to 1 O6 unknowns to be determined. For the 
solution of such problems we present a numerical algorithm which is 
made to work most efficiently on modern multiprocessor, vector com- 
puters. The usefulness of the algorithm is illustrated by deconvolving 
optical pictures of the sky taken with astronomical telescopes. 0 1992 

Academic Press. Inc 

1. INTRODUCTION 

The mathematical modelling of physical processes very 
often leads to the problem of solving a Fredholm integral 
equation of the lirst kind, which can be represented in its 
discretized form as 

N 

C h,,g,=d,-E,, p= I,..., M. (1.1) 
i= I 

Here, the “original” (“true”) object (source distribution, 
image, map) g, is blurred by the operation of the point- 
spread function (PSF) hpi of the measuring device (e.g., 
spectrometer, tomograph, telescope), giving rise to a data 
set d,, which is disturbed by the superposition of random 
noise fluctuations a,. For notational brevity the suffixes in 
Eq. (1.1) are written as one-dimensional, even in the multi- 
dimensional case; Greek indices are used for data space and 
Latin ones for image space. In practice, the individual 
values sir cannot be measured and are, therefore, unknown. 
Only some statistical properties of the underlying distribu- 
tion from which the E, are drawn can be given. If the PSF 
depends on the distance between pixels p and i only, 

Eq. ( 1.1) reduces to an integral equation of the convolution 
type. 

Due to the smoothing action of the PSF, the solution of 
Eq. ( 1.1) for the gi is, in general, an ill-posed problem [ 11. 
This means that small perturbations of the (noisy) right- 
hand side can cause unacceptably different values for the gi. 
A straightforward inversion of Eq. (1.1 ), which is in any 
case only possible for N = M, will lead to excessively 
oscillating solutions violating, in general, problem-inherent 
constraints (e.g., positivity of the solution if the gi repre- 
sent a density or an intensity distribution, respectively). 
Obviously, such an approach is meaningless. 

In the general case with N > M, important examples of 
which are aperture synthesis in radio astronomy [2] or 
medical tomography [3], there exists, in principle, an 
infinite number of solutions of Eq. (1.1 ), each of which may 
be described by a distributionf, in image space. Associated 
with each such distribution fi are simulated data (model 
values, “mock” data) 

m, = C hgi.fz, p = 1, . . . . M, (1.2) 

which reproduce the right-hand side of Eq. (1.1) within the 
noise level. From a purely mathematical point of view, out 
of the infinite number of possible solutions, none is to be 
preferred, but as a matter of practical procedure, exactly one 
satisfactory solution has to be selected. It seems reasonable 
to choose that which is the “best” in some plausible (albeit 
arbitrary) sense and which does not violate any a priori 
knowledge about the true solution. That is, the solution of 
Eq. (1.1) has to be reformulated as an optimization prob- 
lem which is mathematically equivalent to stabilizing the 
solution of Eq. ( 1.1) via an optimized functional. 

Since the pioneering works of Larkin [4] and Frieden 
[S] during the last two decades, the maximum entropy 
method (MEM) has proven to be a very powerful and 
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reliable technique for deconvolution and image reconstruc- 
tion and has found widespread applications. The most 
attractive features of MEM are (i) that the entropy func- 
tional (1.3a) can be derived from simple heuristic arguments 
[6], (ii) that it is data-adaptive in that it uses all the infor- 
mation known about the data and noise, and (iii) that noise 
is suppressed very efficiently in the reconstructed map or, in 
other words, that only that structure is deconvolved for 
which there is sufficient evidence in the data. According to 
the basic principles of MEM, which, for example, are dis- 
cussed in Jaynes [7-lo] and [ 111, Eq. ( 1.1) can be restated 
as an optimization problem in the following way: Maximize 

= -T$(log(N$)-l)=max, (1.3a) 

subject to the constraints 

gk(r) = g,(r, y . . . . rM) := G,(r) - Giim = 0, k = 1, . . . . K. 

(1.3b) 

Here, S(f) is the entropy functional which is modified in 
order to ensure that the total ilux F, of the reconstructed 
map is C, f; = F,. This can be seen by an unconstrained 
optimization of S which yields the default valuesf, = F,/N, 
i= 1 , .**, N, that is, the “flat” map. If the data d, and thefi 
are given as fluxes per pixel, then it follows immediately that 
F, = C, d,,, except for boundary effects. Flux from outside 
may be scattered into the map d,, or flux within the map 
may be partly scattered out of the map, and not contribute 
to &, d,. However, the deconvolved map is not very sen- 
sitive to the precise value of F, [12]. For interferometer 
measurements which do not give the total flux, a zero- 
spacing observation must be added which directly yields F,. 

The error statistics G,(r) take care (i) that the recon- 
structed map fi represents the actually measured (noisy) 
data within the noise level c@ of datum d, via the normalized 
residuals 

rp = (m,, - dph’as, /L=l h4, , . . . . (1.4) 

whereby m,, is given in Eq. (1.2), and (ii) that the statistical 
distribution of the rp coincides sufficiently well with that 
known for the E,,. In general, a small number (K < 2) of 
constraints sufftces in order to fulfill these two requirements 
C61. 

The parameter Giim, the value of which depends on the 
special form of G,(r) and can be derived from statistical 
considerations, sets some (upper) bound to the value which 
plausibly is allowed for the error statistic Gk. In the case of 

a Gaussian error law for the .slr, mostly a single error 
statistic (K= 1 ), usually x2, is used [ 131; that is, 

G,(r)=xr:, 
I’ 

(1Sa) 

and the expectation value (x*)~~~ or the most probable 
value <x2 )prob of the X2-statistic can be used for GTim. The 
smaller a value of G ym is chosen the better the model values 
m, must lit the data d,. Consequently, more structure must 
show up in the deconvolved map but at the risk of being 
nonrealistic and overinterpreting the (noisy) data. There- 
fore, in practice, different values of Gym should always be 
tried. 

Using x2 as error statistic, the distribution of the fit 
residuals rp becomes markedly non-Gaussian in certain 
applications, and it may be preferable to replace x2 by the 
so-called E2-statistic [ 141 which is defined by 

G,(r) = 1 (r(,) - vJ2. 
P 

(1Sb) 

Here, rep) is the pth ordered residual, and vP is given by 

s 
“P 

e - 1212 dt = $i (p - 0.5)/M. (1.6) 
-cc 

Again, the expectation value ( E2),,p or the most probable 
value ( E2)prob of the E2-statistic can be used for Gym. 
Fit formulas for computing (E2),,, and (E2)prob, 
respectively, are given in [ 151. 

Due to the smoothing action of the entropy functional 
(1.3a), there results a bias of the reconstructed map f, 
towards the flat map, giving rise to a strong correlation of 
the residuals r, with the model values m,. As was shown in 
[6] this difficulty can be overcome by introducing an addi- 
tional constraint (K= 2) namely the so-called T-statistic 
which is defined by 

G2(r) = 1 r,m,h,. 
P 

(1.7) 

By applying these two constraints, not only the overall 
shape of the residual distribution is checked (by x2 or E2, 
respectively) but also the spatial distribution over the 
reconstructed map (by T). In practical applications, we 
found values of G;im in the range - 5 < G;‘“/M d + 5 to be 
suitable. 

Due to the close connection of the entropy functional 
with the information content (structure) of the recon- 
structed map, the approach (1.3) for solving a Fredholm 
integral equation of the first kind seeks to find a compro- 
mise between a maximally smooth map and an optimal lit 
of the model values to the data set. It should be noted that 
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the comparison of the reconstructed map and the actually 
measured data set is made entirely in the data space via the 
constraints gk(r). 

A numerical algorithm for solving problem (1.3) with 
K = 2 which is made to work most efficiently on modern 
vector-processing computers is given in Section 2. Examples 
are given in Section 3, followed by some conclusions in 
Section 4. 

transform (FFT). This is true to a high degree for vector- 
processing machines. 

The method of Wilson defines, in each iteration step, a 
subproblem to minimize a quadratic approximation of the 
Lagrangian function subject to the linearized constraints. 
Therefore, problem (1.3) can be transformed into the 
sequential solution of the subproblems 

$dTHd + VS(f )’ d = min (2.la) 

2. A NUMERICAL ALGORITHM subject to 

where we have assumed that two constraints are in opera- 
tion (K = 2). Here, the entropy functional (1.3a) is replaced 
by -S in order to have a minimization instead of a 
maximization problem. The actual metric in Eq. (2.la) is 
defined by 

which is the Hessian of the Lagrangian function 

The maximum entropy approach (1.3) for solving the 
Fredholm integral equation of the first kind (1.1) requires 
the solution of a nonlinear optimization problem with non- 
linear constraints. The problem is also a large-scale one, 
since the reconstructed map (the fj’s) may contain up to 
about N = lo6 pixels that must be determined. The number 
of data points M may be similarly large. It follows 
immediately from this large-scale nature of the problem that 
ordinary methods for solving constrained optimization 
problems, such as modified Newton methods or sequential 
quadratic programming algorithms, cannot be applied, due 
to the required storage and inversion of N x N matrices. The 
handling of such material is beyond the scope of even very 
large modern computers. However, Newton methods have 
been successfully employed for solving small-scale maxi- 
mum entropy problems [S, 161. Zeroth-order methods 
which require the computation of the functional S and the 
constraints g, only, are also not applicable because their 
rate of convergence is generally too slow. Similar considera- 
tions hold for first-order methods which involve, beside the 
computation of S and g,, the corresponding gradients too. 
It seems that only those methods are feasible which use 
transformations iteratively from the image space into the 
data space and vice versa [17]. Mathematically well- 
grounded algorithms for solving large-scale maximum 
entropy problems do exist in the literature [lS, 191, but 
these are only for the cases where the constraints can be 
taken as linear. Clearly, these algorithms cannot be applied 
to our current problem. 

and the current iterates are denoted by f and r, whereby r is 
a function of f which is given in Eq. (1.4). The symbol V 
means differentiation with respect tofi; that is, 

The optimal Lagrange multipliers p, , p2 of subproblem 
(2.1) are used as guesses for defining the Hessian H in the 
foIlowing iteration step. A line search with a step size 
parameter I > 0 is used to find a new vector 

Vg,(rlT d + gl(r) = 0 

Vg2(rlT d + g*(r) = 0, 
(2.lb) 

H=VVW-P~ VVgl(r)-p2VVg2(r) (2.2) 

WI = S(f) - p1 g,(r) - p2 g2(r), (2.3) 

VS(f 

Vgdr 

)T=($,....-g)‘, 

)’ = ($f, . ..) g)T. 

In order to overcome the above-mentioned difficulties 
associated with the high dimensionality of the problem, a 
new algorithm based upon the variable-metric method of 
Wilson [20] was developed. As it turned out this algorithm 
works most efficiently on vector-processing computers, 
since many vector operations in image-space and in data- 
space, together with image-data transformations and vice 
versa have to be performed in each iteration step of the algo- 
rithm. Of course, this implies that the image-data as well as 
the data-image transformations must be coded efficiently. 
In the case where Eq. (1.1) is of the convolution type, the 
transformations are simple convolutions which can be 
computed in the most efficient way via the fast Fourier 

f*=f+Ad, (2.4) 

such that a penalty function P(1) will have a lower function 
value at the new iterate f *. For more theoretical details see 
[21, 221. 

Because of the high dimensionality of maximum entropy 
reconstructions (d is an N-component vector, His an N x N 
matrix!) it is evident that the subproblem (2.1) is 
unsolvable, since the inverse of the Hessian H cannot 
be determined. Therefore, we have tried: (i) to represent 
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the increment vector d as a linear combination of a small 
number n, of suitable chosen “search directions” e,, that is, 

is a diagonal matrix, we have for the Hessian (2.2) 

d= 2 ale,, 
/= I 

(2.5) 

where each e, is an N-component vector belonging to image 
space; and (ii) to replace the customary line search by 
constraining the length of d, for example, by the condition 
Cl71 

d’(VVS) d 6 R/F,, (2.6) 

where R > 0 is a free parameter of the algorithm. Condi- 
tion (2.6) is equivalent to defining a “trust” region in 
N-dimensional space within which the next iterate of the 
map f has to be found. 

The value of the parameter R can be estimated in the 
following manner. Inserting the flat map fi”’ = F,/N, i = 
1 7 . . . . N, into the cost function (1.3a) we find that S(fco)) = 1. 
Due to the logarithmic term involved, S(f) is a slowly 
varying function of its argument f. Therefore, we have 
S(f) N O( 1) for any other map f. Having this in mind and 
expanding S into a Taylor series, 

S(f + d) = S(f) + VSTd + ;dT(VVS) d + . . . , 

we see immediately that a reasonable trust region around f 
could be defined by 6 := d’(VVS) d being sufficiently 
smaller than unity, say 6 N 0.1. Comparing this estimate 
with Eq. (2.6), we find that R should be of the order of 6 . F,. 
This result is confirmed through numerical experiments, 
where we have found values of R in the range (0.14.3) F, to 
be adequate. 

The main advantage of using the Hessian VVS as the 
metric for calculating the length of d in Eq. (2.6) is that, 
because of 

(2.7) 

large pixel valuesfi are allowed to change more than low 
ones [23]. This is important because high values off, 
presumably represent the most interesting parts of the 
reconstructed map. In addition, it helps to accelerate the 
convergence rate of the algorithm. 

It is evident that the search directions e, cannot be derived 
on purely mathematical grounds. The following considera- 
tions, however, show how to choose them in a heuristic 
(albeit arbitrary) way. Since 

1 
H=FDP’-p,VVg,-pZVVg, 

0 

=; DP’(IN,, -FOP, D(VVg,)-Fo’,P,D(VVg,)), 
0 

where I, x N is the identity matrix of order N. Thus, the 
inverse Hessian H ~ ’ is given by 

HP1=Fo(ZNxN -FOP, D(VVg,) 

- Fo PZ D(VVg, )I ~ ’ D. (2.8a) 

As mentioned in the Introduction, the job of the error 
statistic g, is to force the reconstructed map to represent the 
actually measured data. Consequently, g, is responsible for 
the deconvolution of basic structures inherent in the map. 
To the contrary, the statistic g, was introduced into the 
problem in order to force the residuals rp to be more or less 
uncorrelated with the model values m,. Consequently, the 
application of g, is expected to result: (i) in an enlargement 
of peaks, (ii) in an enhancement of structure in general, and 
(iii) in a smoothing of the background. However, through 
the use of g,, new major peaks or new basic structure are 
not expected to show up in the deconvolved map. Therefore, 
it can safely be assumed that constraint g, will give only 
small corrections to the solution of subproblem (2.1), in 
comparison with that of the first constraint g,. 

In retrospect, this assumption can be checked after the 
solution of problem (1.3) by inspection of the Lagrange 
multipliers. Let p, and pz denote the Lagrange multipliers 
relative to constraint g, and g,, respectively, at the optimal 
point. Since a Lagrange multiplier indicates the relative 

TABLE I 

M87: Numerical Results for the Various Versions of MEM 
withN=M=128x128 

Version of MEM 

x2 E2 E’+T 

Gaim 
I 16682 3.52 3.52 

G”‘” 
s2 

0 
-0.6539 -0.6171 -0.5694 

PI -4.18 x 1O-6 - 1.31 x 1o-6 -7.00 x 1om4 

P2 + 1.06 x 10m6 
Iteration number 11 20 27 
CPU-time (s) 4.90 10.28 16.19 

F,(VVS) =diag(f;‘, . . . . f;‘) =: D-’ 

Note. S is the value of the modified entropy functional at the final map, 
p, and p2 are the optimal Lagrange multipliers. In order to calculate S the 
scaling factor was chosen to be F0 = 1. Gfrn and Gym are the final values of 
the error statlsttcs. 
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TABLE II 

NGC 1144: Numerical Results for the Various Versions of MEM 
with N=M=256x256 

Version of MEM 

x2 E2 E’fT E’+T 

G”‘” I 65536 3.68 3.68 3.68 

G”‘” 
s2 

4M 2M 

-0.99789 -0.99272 -0.99250 -0.99198 

PI 4.26 x 10 s -2.98 x 10-s -1.03 x 10m3 -5.13 x lo-’ 
P2 -3.22 x 10 ’ -1.26 x 10 s 

Iteration number 9 21 53 52 

CPU-time (s) 15.79 48.84 113.3 111.5 

Note. S is the value of the modified entropy functional at the final map, 
p, and p2 are the optimal Lagrange multipliers. In order to calculate S the 
scaling factor was chosen to be F0 = 1. G;‘” and G;im are the final values of 
the error statistics 

deconvolved map does not depend at all on the actual 
choice of the individual subspaces during the iterations. In 
view of the computational expense of the algorithm, 
however, as few search directions as possible should be 
invoked. 

It is worth mentioning that for the calculation of the n, 
search directions e,, defined in Eq. (2.9), no matrix-vector 
operations are necessary which would be prohibited due to 
the high dimensionality of the vectors and matrices 
involved. The main reasons for this are: (i) that D is a 
diagonal matrix, and (ii) that the Hessian VVg, is of special 
structure. For example, let g, be given by 

M 

g,(r)= 1 t-;-Gym. (2.10) 
jl=l 

The Hessian of it is 

M hpihpj (VVgJq= 2 c -. 
p=I a: 

(2.11) 

importance of the corresponding constraint [24], we would 
expect that lpZl < lpi 1. As will be demonstrated by the 

For the ith component of D(VVg,)a (whereby a is an 

examples, this expectation proves true (see Tables I and II). 
arbitrary N-component vector), we have 

On these grounds, it seems justified to neglect in Eq. (2.8a) 
the term involving g,. Then, a formal Taylor expansion 
of Eq. (2.8a) yields, for the inverse of the Hessian, 
approximately 

(D(VVg,)aL=2fi f  $( f  h,,aj). (2.12) 
p=l P j=l 

As can be seen from Eq. (2.12) only one data-image and one 
image-data transform has to be performed in order to 
calculate the vector D(VVg,)a. One should note that in 
Eq. (2.12) the summation in data-space is on the first index 
of h,m which is equivalent to using the transpose hf of the 
PSF. Similar considerations hold for the calculation of the 
search directions in connection with the other error 
statistics defined in Section 1. 

H-‘d’,,(D+F,p, D(VVg,)D 

+ f’: P: D(VVg, 1 DWVg, 1 D). (2.8b) 

Inserting Eq. (2.8b) in Eq. (2.1) shows immediately that 
the vector d can be represented as a linear combination of 
the six vectors 

e, = DVS, e,=D(VVg,)e,, e,=D(VVg,)e,, 

e,=DVg,, e4=D(VVgl)e2, e,=D(VVg,)e,, 
(2.9) 

where D = diag(f,, . . . . f.). It seems advantageous to iden- 
tify the search directions in the N-dimensional space with 
the six vectors e, given in Eq. (2.9); that is, we have n, = 6. 
From a conceptually quite different approach (“entropy 
metric”) Skilling and Bryan [ 171 arrived at a similar result. 

The family (2.9) of search directions has proven to be suf- 
ficiently powerful to solve all test problems so far. This again 
justifies the omission of constraint g, when inverting the 
Hessian H. It is rather remarkable that such a small sub- 
space can capture enough of the structure of the large-scale 
optimization problem (1.3) [ 171. However, in very difficult 
problems it might be helpful to have some information 
about g, present in the subspace spanned by the base 
vectors e,. Otherwise, the algorithm might converge very 
slowly. In any case, if convergence is reached, the final 

By means of the definition of d given in Eq. (2.5) the 
subproblem (2.1) is transformed into the new subproblem 

iyTH *y + sTy = min 

aTy+g,=O 

aTy+g,=O: 

(2.13a) 

where we have to determine the unknown vector y 
belonging to the subspace .Z of dimension n,. Thus, the 
N-dimensional problem (2.1) has been transformed into the 
n,-dimensional one (2.13a). Here, we have set 

(s)[= VSTe,, 

(a,),=VgTe,, 

(a2L = VgZe,, 

:H* L = eifAVVS) e, - PI e2VVgl 1 e, - p2e~(VVg2) e, 

=: W’3’Ln,- P~(H(‘)),,- ~z(H(*))m,, 
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with 1, m = 1, . . . . 6. Correspondingly, the inequality con- 
straint (2.6) transforms into 

yTHc3’y < R/F,. (2.13b) 

In order to simplify the solution of the new subproblem 
(2.13) we diagonalize matrix H * by virtue of the transfor- 
mation 

y  = EFx, % YEZ, (2.14) 

by which (2.13) reduces to 

ix’ diag(b,, . . . . 6,) x + bTx = min 

c:x+g,=o 

cTx+gz=O 
(2.15) 

RjF, - xTx > 0 

with b= (EF)Ts, c, = (EF)Ta,, and c2= (EF)T a2. The 
transformation matrices E and F, respectively, are defined 
by the equations 

c’ \ETH”‘E= diag(q,, . . . . q6), 

F: 
FTF= Iex6, 

FTfiF = diag(6 i , . . . . 6,), 

(2.16a) 

where we have set 

~=I,,,-P,E~H(‘)E-~,E~H(~)E, (2.16b) 

and bx6 is the unity matrix of order 6. The transformation 
matrices E and F, respectively, actually do exist, since the 
matrices H(l), H”‘, Hc3’ are symmetric, and Ht3’ is 
positive-definite (see Eq. (2.7)). However, it may happen 
that the search directions e, are linearly dependent, giving 
rise to a singular or nearly singular matrix Hc3). This can be 
taken into account in the course of the simultaneous 
diagonalization of matrices H”’ and Hc3’ by discarding 
“small” eigenvalues of H (3), which is equivalent to reducing 
the dimension n, of subspace Z. Of course, such a reduction 
of n, by no means affects the existence of matrices E and F. 

Coupling the inequality constraint in Eq. (2.15) to the 
cost functional via a Lagrange multiplier p, we finally arrive 
at the subproblem 

fx’ diag(b, + 2p, . . . . 6,+2p)x+bTx=min 

cfx + g, =0 (2.17a) 

c;x+g2=o 

which has to be solved in each iteration step of the 
algorithm. Hereby, the Lagrange multiplier p has to be 
determined in such a way that the condition 

R/F, - xTx > 0 (2.17b) 

is met. Subproblem (2.17) is a simple least-squares problem 
with two linear equality constraints and one quadratic 
inequality constraint. The solution of (2.17) is a crucial step 
in finding a solution of the optimization problem (1.3). 
Unfortunately, (2.17) may not have a solution because no 
feasible point of problem (2.17a) may satisfy the inequality 
constraint (2.17b). Then a slight modification of (2.17a) is 
necessary. Details of the solution of subproblem (2.17) are 
given in the Appendix. 

Summarizing the individual steps which we have 
discussed above, we propose the following algorithm for 
solving large-scale maximum entropy problems which can 
be cast in the form of Eq. (1.3): 

(A) Start with the “flat” map:f, = F,/N, i = 1, . . . . N; 
Set Lagrange multipliers: p, = p2 = 0; 

(B) Initiate iteration step: 

(1) Compute S, g,, g,, and the gradients VS, Vg,, 
v&72; 

(2) Compute search directions e,, f = 1, . . . . 6; 
(3) Compute matrices H (k) k = 1, 2, 3, and vectors , 

s, a,, a, of subproblem (2.13); 
(4) Compute matrices E, F, and diag(b,, . . . . 6,~); 
(5) Compute vectors b, c,, and c2 to set up sub- 

problem (2.17); 

(C) Solve subproblem (2.17); 
determine optimal Lagrange multipliers pk, k = 1, 2. 

(D) Correction step: 

(1) Compute y = EFx, and the increment vector d = 
C;S , .va 

(2) Update map f * = f + d, and Lagrange multipliers 
p;=pk,k=1,2. 

(E) Test of convergence: 

Ifdm<e, and IIp:c, +p;c,-b)I <s2STOP,or 
go to (B). 

Here, s1 and s2 are free parameters of the algorithm which 
control the accuracy to which the optimal point has to be 
reached. We have found the values E, = lop2 and ~~ = 

5 x 10e2 to be useful in practice. The reconstructed maps, 
however, vary only a little, even when these tolerance 
criteria are substantially relaxed. 

We have coded the algorithm described above with 
approximately 2300 statements in Fortran 77. Three dif- 
ferent versions of MEM have been implemented. In the first 
version only one constraint is active, and x2 (see Eq. (1.5a)) 
serves as the single error statistic (K= 1, “1’-version”). The 
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same is true for the second version, apart from x2 being if the E*-statistic is used as constraint, such corrupted 
replaced by E* which is defined in (1Sb) (K= 1, “E*- points can easily be picked out as outliers when the 
version”). Finally, the third version uses both E* and T (see residuals are sorted and can be inspected individually [ 141. 
Eq. (1.7)) as error statistics (K= 2, “(E* + T)-version”). 
Each iteration step of the algorithm requires the computa- 

In particular, items (a) and (b) are important in the context 

tion of seven image--data and six data-image transforms in 
of radio astronomical observations, where the baseline of 

order to compute the constraints, the search directions, and 
the map as well as the noise 6, has to be determined from 

the parameters of the subspace models. In addition, a con- 
the measured data set d, itself. 

siderable number of dot products each of length N or A4 
have to be calculated. For example, the x2- or E*-version 
needs 49 dot products and for the (E* + T)-version some 98 3. EXAMPLES 

dot products have to be computed in each iteration step. 
Moreover, if E2 is used as the error-statistic, the M residuals 
( 1.4) must be sorted in increasing order. Fortunately, 
evaluation of the dot products as well as sorting of the 
residuals can be vectorized excellently and even parallelized 
to a great extent if a multiprocessor machine is used. The 
major computing expenses of the algorithm are, however, 
the transforms. In all applications which we have carried 
out so far about 50 to 60% of the total CPU-time is 
necessary to perform the required transforms. This implies 
that they must be coded exceedingly efficiently. The number 
of iterations required to reach convergence to the optimal 
point depends both on the signal to noise ratio of the data 
and on the version of MEM being used. In general, 1650 
iterations are sufficient for most problems. Interestingly, 
this number does not depend noticeably on the numbers N 
and M. 

The resulting program has proved highly reliable and 
powerful in a number of applications [ 151. Difficulties have 
occurred only if the maximum entropy problem was 
improperly posed, which may happen predominantly in the 
following circumstances: 

(a) If the baseline of the map has been estimated too 
high, there may exist too many data points with d, < 0. In 
this case, no solution of the optimization problem (1.3) may 
exist, since the fulfillment of the constraints (1.3b) may not 
be possible on grounds of the positivity requirement of the 
entropy functional. If, on the other hand, the baseline has 
been determined too low, the positivity requirement may 
become irrelevant. 

(b) The noise estimate in an image is crucial because it 
enters into whatever error statistic is used. If, for example, 
the values of the errors r~,, of the data d,, are estimated too 
small, the model values mp are forced to fit the d, too close, 
and noise on the data may be interpreted as true signal. An 
extremely noisy map, however, is in contradiction to the 
smoothness requirement of the entropy functional and, 
consequently, the algorithm may not converge under these 
circumstances. 

(c) If occasional erroneous data points are included in 

The following examples were all performed at the 
Leibniz-Rechenzentrum in Munich, using the CRAY 
Y-MP4/432 computer system, running under the operating 
system UNICOS at level 5.1. 

3.1. Photography of M87 

The elliptical galaxy M87 (NGC 4486) in the Virgo 
cluster was photographed on line grain IIIa-J emulsion by 
H. Arp, using the 5 m Hale telescope on Mt. Palomar at a 
seeing of about 1 in. and digitized in a raster of 120 x 120 
points. The digital plate scans were obtained with a two-axis 
PDS microphotometer at eight bits per pixel [25]. The dis- 
cretized image, a contour plot of which is shown in Fig. 1, 
was deconvolved by a Wiener-filter method [ZS], MEM- 
deconvolved by Bryan and Skilling [14] and Reiter and 
Pfleiderer [6], and deconvolved by Pfleiderer using a mini- 

L , 

FIG. 1. Raw data map (roughly I x 1 ft). The contour levels are 10,20, 
the data set d,,, no solution of problem (1.3) may exist, due 
to the smoothing action of the entropy functional. However, 

30,40,50,60,80, 100, 120, 140, 180,220,260, and 300. North is up, East 
is left. 
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FIG. 2. Deconvolved source map of M87, X2-version with 
G;‘” = 16682. Contour levels as in Fig. 1. The resolution is increased even 
if the high peaks are somewhat lowered as compared to the raw data. 
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FIG. 3. Deconvolved source map ofM87, E2-version with Gft’” = 3.52. 
Contour levels as in Fig. 1. The resolution and peak height is increased. 

mum information (MIM) approach [26]. The relevance of 
M87 to the various methods of deconvolution lies in the 
following facts: 

(a) the jet emerging from the nucleus of M87 consists of 
several distinct knots which serve as a good test for the 
resolution achieved in the deconvolved map. 

(b) Noise oP and data d, are significantly correlated, as 
is typical for photographic plates. In MEM-deconvolutions 
this correlation generally leads to a distribution of the 
residuals rP (1.4), contradicting that of the assumed noise 
model if only one constraint (1Sa) or (lSb), respectively, is 
used. In this case, therefore, the additional application of the 
T-statistic (1.7) is mandatory in order to force the residuals 
to have their correct statistical distribution [6]. In Wiener- 
filter deconvolutions, the noise-data correlation may yield 
unrealistic dark haloes around point-like sources due to 
filter cutoff at high spatial frequencies [25]. 

For the purpose of getting a code which is executable as 
fast as possible, the image-data and data-image transfor- 
mations are both taken as circular, i.e., each row and 
column of the matrix to be convoluted is continued 
periodically. This is possible because the raw data map is 
sufficiently smooth near the boundaries (Fig. 1). The fast 
Fourier transform (FFT) can be used to great advantage for 
computing the convolutions because the matrices are peri- 
odic. For a further speedup the data map is extrapolated to 
128 x 128 = 214 pixels in order to make the FFT work most 

BEAM 

@ 

J 

FIG. 4. Deconvolvcd source map of M87, (E’+ T)-version with 
Gym = 3.52 and Gym = 0. Contour levels as in Fig. 1. As compared to 
Fig. 3, no increase in resolution but enhancement of peaks. 
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NO. OF ITERATION 

FIG. 5. M87: March of CNORM =,/m in dependence of the iteration step. The X2-version is labeled (1) the E*-version is labeled (2) and 
the (E’+ n-version is labeled (3). 

efficiently. The resulting code can perform a single trans- 
form in about 24 ms of CPU-time. 

The results of the deconvolutions obtained by the dif- 
ferent versions of MEM are given in Figs. 2 to 4. A more 
detailed discussion of these results can be found in [6, 151. 
The main results concerning the numerical algorithm are 
given in Table I, and in Fig. 5 the rate of convergence for the 
various versions of MEM is shown. 

As can be seen in Tables I and II, the optimal Lagrange 
multiplier p2 is about two to three orders of magnitude 
smaller than the optimal value of p, . This can be taken as 
an a posteriori vindication for the assumption made in 
Section 2 that the second constraint need not be taken into 
account for the inversion of the Hessian matrix when 
computing the search directions e,. The smallness of the 
Lagrange multipliers p, and pz indicates that the optimal 
value of S and, hence, the final reconstructed map, does not 
depend critically on the values chosen for Gym and Gym 

~241. 
Exploiting the parallelism inherent in the algorithm, it is 

possible to save 16 and 27 % of the elapsed CPU-time 
(given in Table I) for the x2- or E2-version and the 
(E2 + T)-version, respectively, if four processors of the 
CRAY Y-MP/432 are invoked. The total CPU-time, 
however, is much larger, due to the overhead which is 
necessary in order to synchronize the processors. 

3.2. CCD frame of NGC 114311144 (Arp 118) 

The data of the interacting pair of galaxies NGC 1143/44 
were kindly supplied to us by Mr. Roberto Vio of the Osser- 
vatorio Astronomico di Padova. The CCD had 512 x 291 

581/103/l-13 

pixels of size 0.32 in. squared. For our purpose, however, we 
actually use only a smaller “submap” of size 256 x 256 = 2i6 
pixels which has been cut out from the larger raw data map. 
The most interesting features are already contained in this 
smaller map, plots of which are shown in Figs. 6 and 7, 
respectively. Clearly, six sources A to F can be identified, the 

. E 

FIG. 6. Contour plot of the raw data map of NGC 1144. The contour 
levels are 1, 2, 3, 4, 5, 7.5, 10, 15, 20, 30, 40, 50, and 70. The maximum of 
the map is 85.41 at source A, the minimum is -0.78. In all, 14,752 pixels 
have negative values. South is at top, East is left. The distance of the two 
peaks B and C is 40 in. 
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FIG. 7. Raw data map of NGC 1144. 

heights of which are given in Table III. Source C is NGC 
1143, source B is NGC 1144. The projected separation of 
the galaxies is 40 in. ( z 17 kpc) [27]. Sources A, E, and F 
are stars. 

The following model is adopted for the error o,* of datum 
d, : 

i 

0.2 if d,<O 

O.ld,, + 0.2 if O-cd,<6 

a * = P O.O3333d, + 0.6 if 6<d,d12 (3.la) 

0.01316d,+O.8421 if 12<d,Q50 

O.O1429d,, + 0.7857 if 50 < d, < 86, 

where .u = 1, . . . . M. 
Since source A is evidently the image of an isolated star, 

the central 25 x 25 pixels around it are taken as the point- 
spread function. This raw map of the PSF is slightly 
smoothed in order to make the resulting PSF rotationally 
symmetric. The PSF generated in this way has a full width 
at half maximum (FWHM ) of about 2.8 pixels (see insert in 
Fig. 6). 

Exactly as in the M87 example, the convolutions are 
performed circularly. Using the FFT, one transform takes 
about 91 ms of CPU-time. This is only 3.79 times the time 
which is required for one transform in the previous M87 

example, where only one-fourth of the entries had to be 
transformed. This relative speedup is due to the fact that, in 
this example, vectors which are twice as long (256 as com- 
pared to 128) are to be transformed which is advantageous 
whenever a vector processor is used. 

In order to make the algorithm convergent, a constant 
background u = 10 has to be added to each datum d,. 
Mainly two reasons are responsible for doing so. First, 

TABLE III 

NGC 1144: Source Heights for the Data and the Deconvolved 
Maps Using Various Versions of MEM 

Version of MEM 

E2+ Twith T/M= 

Source Data x2 E2 5.0 4.0 3.0 2.0 1.0 

A 85.41 5.17 157.23 173.08 171.48 171.48 164.35 169.64 
B 50.22 10.19 88.44 98.80 101.96 101.79 100.29 103.28 
C 41.47 9.59 65.47 73.10 75.16 74.93 74.28 76.07 

D 13.34 4.35 17.43 19.51 19.49 19.65 18.80 18.65 
E 4.96 2.60 4.60 5.02 5.63 5.69 5.62 5.96 
F 3.74 2.59 2.20 3.06 3.40 3.16 3.10 3.54 

Nore. In each case, the artificial background is subtracted. The 
locations of the sources are given in Figs. 6, 8, 10, and 12. 
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FIG. 8. Source map of NW 1144 as deconvolved using the X2-version 
with Gym = M. The contour levels are 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10, 15, 20, 
30,40, 50,70,90, 110, and 160. 

about 25% of the data have negative values. As already 
mentioned above, no solution of the optimization problem 
(1.3) may exist on grounds of the positivity requirement of 
the entropy functional if too many data are negative. Since 
the data minimum is -0.78, a constant background of 
u = 0.75 or so would, however, suffice. The second, much 
more important reason is the overshoot towards negative 
values of the deconvolved map near point-like sources. This 
will become clear later on when the results of the deconvolu- 

tions are discussed in more detail. In order to allow for the 
background U, the noise o,* of the original data map is 
increased by 10 % , that is, 

up = l.la,* for fi = 1, . . . . M, (3.lb) 

where u,* is given in (3.la). 
On theoretical grounds an expectation value 

(E’),,, = 3.68 of the E2-statistic results from M= 216 data 
points [IS]. However, this value can only be attained if it is 
possible to fit the map with no statistically significant 
residuals. Otherwise the value of the E*-statistic which 
actually can be attained is several times greater than 
(E* )exp. In our case, it was necessary to smooth and sym- 
metrize source A in accordance with the symmetric PSF. 

The outcome of the deconvolutions obtained by the dif- 
ferent versions of MEM are presented in Figs. 7 to 13. The 
main results concerning the numerical algorithm are given 
in Table II. In comparing Tables I and II it is well 
demonstrated that the number of iterations required to 
reach convergence is practically independent of the numbers 
N and M. This is true at least for the x2- and E*-versions. 
The rather slow rate of convergence of the (E * + T)-version, 
however, is mainly due to the presence of the point source 
A. This indicates that, in general, the deconvolution of 
point-like structures is much more difficult for the (E* + T)- 
version of MEM than it is for the other two versions. The 
numerical expense per iteration of the algorithm is roughly 
proportional to N and M. 

The use of the X2-version gives only a poorly deconvolved 
map. The reason is probably that the (estimated) errors for 
high intensities are much too large. The x2 constraint allows 
a small number of residuals to be exceptionally large while 
the entropy gains markedly if sharp features are drastically 

FIG. 9. Deconvolved source map of NGC 1144, X*-version with G;‘” = M. 
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FIG. 10. Source map of NGC 1144 as deconvolved using the 
Ez-version with G;‘” = 3.68. Contour levels as in Fig. 8. 

reduced. The low-intensity details (spiral arms around B) 
are seen as well as in the other deconvolved maps. The noisy 
background can be explained by the fact that slight overfit- 
ting is advantageous in the X2-method in order to reduce x2 
so that the residuals in the spikes can be correspondingly 
larger. The example demonstrates very well that not only a 
good choice of the errors but also a good error statistic 
should be used. As was the case in the above-given M87 
example, the residuals rP are distributed markedly non- 
Gaussian. There are more than 100 residuals beyond eight 
standard deviations, the greatest residual in magnitude 
being rP = - 25.61. On statistical grounds, however, only 
four residuals beyond four standard deviations would be 
expected. 

Contrarily, the E2-version clearly increases in magnitude 
the major peaks A to D, and the background is smoothed. 
Sources E and F (faint stars), however, are somewhat 
lowered. A source just off the right to source D which is only 
marginally visible in the data map, is resolved more clearly 
in the deconvolved map. Directly above source A a point- 
like source shows up which is only marginally visible in the 
data map. Source C seems to be elongated in the direction 
towards source B. Spiral arms around the central source B 

FIG. 11. Deconvolved source map of NGC 1144, E2-version with Gfm = 3.68. The source A is cut at a height of 125. 
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FIG. 12. Source map of NGC 1144 as deconvolved using the 
(E2 + T)-version with G;im = 3.68 and G;‘” = +4M. Contour levels as in 
Fig. 8. 

are clearly visible. Source A is now spread over 4 x 4 pixels 
only; that is, the size at its base is of the same order of 
magnitude as the FWHM of the PSF. This seems to be a 
very satisfactory result. However, about 60 pixels sur- 
rounding source A have values which are significantly 
smaller than the average level of the deconvolved map 
(Z 10.47). That is, had the background u not been added to 
the original data, negative values would result in order to 
deconvolve the point source A. Evidently, this would be 
impossible due to the strict requirement of positivity of the 
entropy functional. Therefore, the addition of a constant 
background is mandatory in this example. To our 
knowledge, this is the first time where such a Gibbs-like 
phenomenon is observed in connection with MEM decon- 
volutions. Constraining E* only, a value T = 6.09M arises 
for the final map. 

On the whole, the (E* + T)-version yields the same 
outcome as the E2-version. In some important details, 
however, the additional application of the T-statistic gives 
rise to superior results. Setting T= 4M we found the 
following improvements: First, all major peaks in the map 
are much more enlarged in magnitude (see Table III). 
Second, the final x2 of the map is somewhat smaller 

FIG. 13. Deconvolved source map of NGC 1144, (E* + T)-version with G;‘” = 3.68 and G”,‘” = +4M. The source A is cut at a height of 125. 
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(6.54 x lo4 as compared to 6.56 x 104) which indicates that 
the T-statistic forces the model values m,, to a better fit of 
the data. Third, the correlation of the residuals with the 
model values, which is expected to be zero for a good fit, is 
significantly smaller ( -0.225 as compared to -0.313). 
Altogether, this yields a deconvolved map with an improved 
resolution as compared to the E2-version. As a result, a 
source amidst peaks B and D, which is only marginally 
visible in the data map, becomes clearly visible. This is also 
true for the spiral arms around the central source B. As can 
be seen in Table III, a further reduction of T does improve 
the deconvolved map only marginally. 

Interestingly, the E2-version, as well as the (E2 + T)-ver- 
sion, gives rise to a value of x2 x M, that is, the same value 
to which x2 was constrained in the X*-version. The peaks, 
however, are much more enlarged in magnitude in the E2- 
and (E2 + T)-versions, respectively, as compared to 
the X2-version. Therefore, the much better resolution and 
enhancement of the peaks is not due to a significantly 
smaller value of x2 as might be expected, but, rather, they 
are due to forcing the residuals to have their correct 
statistical distribution. Of course, constraining x2 to a 
smaller value than M could also make the peaks match the 
data more closely, but this will lead to spurious resolution 
elsewhere in the map, with noise on the data being inter- 
preted as true signal. In this sense, the E2- and (E* + T)- 
versions of MEM are safe techniques of deconvolutions, 
enhancing real peaks only, contrary to the plain X2-version. 

4. CONCLUSIONS 

The problem of solving a Fredholm integral equation of 
the first kind is, in general, inherently ill-conditioned [ 11. In 
order to overcome this difficulty the problem has to be 
regularized in a certain respect. An elegant way to do this is 
to stabilize the solution via a functional which is to be 
optimized and to introduce constraints into the problem by 
virtue of which it is ensured: (i) that the reconstructed map 
is consistent with the actually measured data within the 
noise level, and (ii) that all a priori knowledge given about 
the true solution, e.g., positivity, is not violated. Even 
though many functionals can be used in order to regularize 
the solution [26,28], during the last two decades the 
entropy functional (1.3a) has found widespread application 
in many fields of science. At least two reasons seem to be 
responsible for the great popularity of MEM. First of all 
the entropy functional (1.3a) automatically guarantees a 
positive solution everywhere in the reconstructed map. If, 
for example, positivity of the map is mandatory, this implies 
that the number of constraints can be exorbitantly reduced 
and, clearly, the computational expense of the method is 

diminished by the same extent. For most practical applica- 
tions of MEM, one or two constraints suffice in order to 
make the reconstructed map statistically consistent with the 
measured data set [6]. Second, MEM seems to be unsur- 
passed by other methods which are currently in use as con- 
cerns noise suppression and smoothness of the deconvolved 
map. A serious drawback of MEM, however, is that in real 
life applications, e.g., two-dimensional deconvolutions, the 
resulting constraint optimization problem is a large-scale 
one with up to N= lo6 unknowns to be determined. Of 
course, conventional algorithms for solving nonlinear con- 
straint optimization problems cannot be applied because 
the handling and inversion of matrices with N* elements 
would then actually be required which is, obviously, beyond 
the possibilities even of very large modern computer 
systems. 

In order to surmount these difficulties, therefore, we 
propose a new numerical algorithm which is based on 
so-called variable metric methods. This class of methods 
has proved very efficient in solving small-scale nonlinear 
constraint problems. Due to the large-scale nature of the 
optimization problem encountered in MEM, however, 
these methods cannot be applied directly but, rather, must 
be modified in two respects. First, the optimization process 
cannot be performed in the full N-dimensional space of the 
unknowns but must be carried out in a subspace of suf- 
ficiently low dimension n, < N. This subspace is spanned by 
suitably chosen search directions which are appropriately 
adapted to the full N-dimensional space in each iteration 
step of the algorithm (variable metric!). Second, the 
customary line search must be substituted by defining a 
so-called trust region in N-dimensional space within which 
the next iterate of the unknowns has to be found. 

The resulting algorithm has proved highly reliable and 
efficient in a number of applications. Since very many dot 
products and convolutions (FFTs) have to be performed 
during the execution of the algorithm, the possibilities of 
modern vector computers and multiprocessor machines, 
e.g., a CRAY Y-MP, can be fully exploited. From a com- 
putational point of view, therefore, deconvolution no longer 
seems to be a time consuming task but can routinely 
be applied in solving inverse problems in science and 
engineering. 

APPENDIX 

A solution of subproblem (2.17) may be found as follows: 

(1) Determine pm,” such that 6, + 2p,,, >O for i= 
1 7 . . . . 6. This step turns (2.17) into a meaningful problem, 
since occasionally it may happen that some of the 6, are 
negative. 
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(2) Solve problem 

+x’ diag(6, + 2Pmin, . . . . 6, + 2p,i”) x + bTX = min, 

c:x+g,=o, (A.11 

c;x+gz=o. 

If the solution x of problem (A.1 ) satisfies (2.17b) then 
proceed with step 5. 

(3) Solve problem 

X=X = min, 

cfx+g,=o, (~4.2) 

c;x+ g,=o. 

Problem (A.2) results from (2.17a) for p + co. Conse- 
quently, a solution of (2.17) can be found with 
p E [pminr co), provided that problem (A.2) has a solution x 
which satisfies (2.17b). Having this value of p determined, 
solve problem (2.17a) and proceed with step 5. On the other 
hand, if the solution of (A.2) does not fulfill (2.17b), then no 
feasible point of (2.17a) satisfies (2.17b), and the algorithm 
proceeds with the following step. 

(4) Solve problem 

for meticulously reading the whole manuscript, Professor K. Schittkowski 
for introducing me into the variable metric methods, Professor D. Smith 
for carefully reading parts of the paper, an anonymous reviewer for 
improving the manuscript, Dr. L. Walsh for checking the English, and the 
Leibniz-Rechenzentrum in Munich for granting the computer time. 
Dr. J. Skilling kindly provided me with the M87 data, and Mr. R. Vio 
provided me with the NGC 1143/44 data. This research was funded by the 
Deutsche Forschungsgemeinschaft (DFG). Preliminary work for it, which 
was done at the University of Innsbruck, was financed by the Austrian 
Fonds zur Forderung der wissenschaftlichen Forschung. 
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